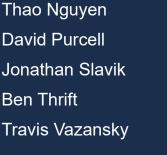
Lunar In-Situ Landing / Launch Environment (LILL-E) Pad


KON

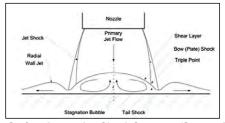
MASTEN

LSIC Dust Mitigation Focus Group 16 December 2021

Team Members

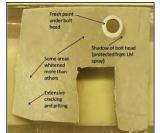
Bailey Burns	T
Miguel Coto	D
Nathan Davis	J
Nicole Bernuy Herquinigo	В
Sterling Lozalee	Т
Parmida Mahdavi	

Faculty Advisor: Dr. George Sowers

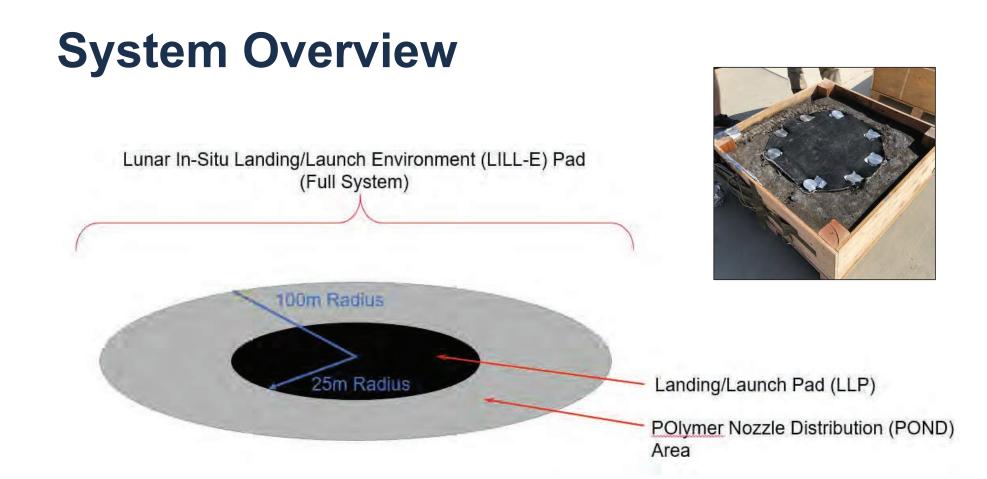

Overview

- Problem Statement
- System Overview
- Potential Stakeholders
- Systems Engineering
- Landing/Launch Pad (LLP)
- Anchors
- POlymer Nozzle Distribution (POND) Area
- Verification Testing
 - Cold Gas
 - Anchor Pull Testing
 - Vacuum Chamber Testing
 - Masten Plume-Surface Interaction
- Results /Conclusions

Problem Statement


High-impact launch/landing events on the lunar surface produce significant shear forces and temperatures. These events, compounded by the vacuum and reduced gravity environment, propel exceedingly abrasive regolith ejecta at velocities sufficient to sandblast local infrastructure. Development of a solution must mitigate regolith ejecta and withstand the significant shear forces and temperatures.

Plume-Surface Interaction Shock Structure (Source: Mehta)



Apollo 15 Surface Erosion During Landing (Source: UCF CLASS)

Surveyor 3 Damage (Source: Immer)

Systems Engineering: Requirements

• Level 1 Requirements

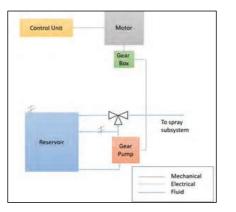
- The LILL-E Pad System shall mitigate 92% of dust ejecta during a nominal landing event
- The LILL-E Pad System shall mitigate 75% of dust ejecta during an offnominal landing event
- The LILL-E Pad System shall function for both a landing event and a launch event

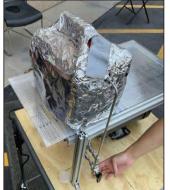
Landing/Launch Pad (LLP)

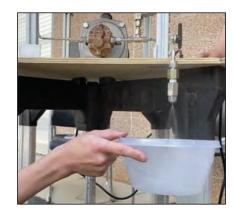
- 3 carbon fiber blanket layups
- Mark II & III
 - Incident Face: Oxidized polyacrylonitrile (OPAN) felt
 - Middle Layer: Plain weave pitch carbon or 3D carbon fabric
 - Back Layer: Silica felt and glass scrim as insulation
- Mark IV is 3D carbon fabric only
- *Note:
 - Combustion of OPAN produces hydrogen cyanide (HCN)
 - Levels are considered low in this application (20 ppm)

Material	opsy	Mark II	Mark III	Mark IV
OPAN Felt	5	Х	Х	
(8) Layers of PW Pitch Carbon Fabric	57	Х		
3D Carbon Fabric (Style 3D-10009)	58		Х	Х
Silica Felt	14	Х	Х	
Glass Scrim	2.4	Х	Х	
Silica Felt	14	Х	Х	
Glass Scrim	2.4	Х	Х	
Total Mass per A	rea (opsy)	94.8	95.8	58
Total Mass per Area (kg/m²)		3.21	3.24	1.96

(Source: Tex Tech Industries)


Anchors


- Custom anchors were designed to hold LLP samples to potential test-beds
- Four iterations of a basic anchor design went through lab-scale testing before a final variant was selected for machining
- In order to ensure survival of the anchor through multiple Masten PSI tests, anchors were fabricated out of 303 stainless steel



- Initially proposed as 2 part (A-B) resin with pressure feed
- Revised to single part UV cure with pump
- Top row shows P&ID, prototype system, and waterflow testing
- Bottom row shows regolith application test, spray cone calibration, and sunlight UV cure test

Verification Testing

- Developed requirements and verification matrix
- Relevant environmental conditions
 - Simulant
 - CSM-LHT-1
 - BP-1
 - Vacuum
 - Rocket plume
- Primary Tests
 - Cold gas
 - Anchor pull testing
 - Vacuum chamber
 - Masten plume-surface interaction test stand (static & dynamic)

COLORADOSCHOOLOFMINES

- LLP Mark II, III and IV were placed inside the testing chamber and fired once with 50 psi and 100 psi of cold gas air each.
- No POND was present during this testing
- There was a baseline test to evaluate the amount of regolith kick-up without the presence of a blanket.
- Some blankets had previous damage from Masten plume testing.
- There was minimal to no regolith kick-up with the blankets and no craters left behind.
- Next slides will display photos of baseline and LLP Marks II, III and IV results

Before

During

After

Baseline Test Results @ 100 psi

Mark II Test Results @ 50 psi

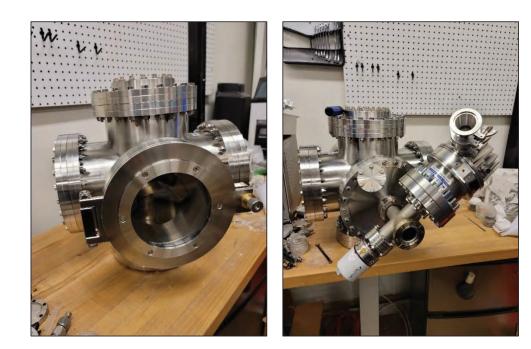
Before

During

After

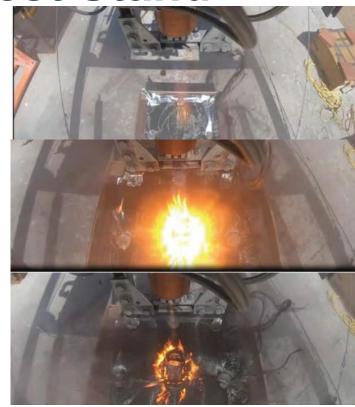
Mark II Test Results @ 100 psi

Verification Testing: Anchor Pull Test


- Anchors were subjected to lifting force (orthogonal), and sheer force (lateral), measured with a digital force gauge
- 264 total tests were completed, with the best performing anchor chosen for more robust fabrication (Shank Pile)

Anchor Type:	Burled length (cm):	Shaft Diameter (cm):	Mass (PLA) (g):	Mass (Aluminum) (g):	Maximum orthogonal force value (N):	Maximum lateral force value (N):
Simple Pile (Anchor 1)	19.06	2	98	290	72	132
Helical Pile (Anchor 2)	19.06	2 (Including threads)	94	243	70	124
Shank Pile (Anchor 3)	19.06	2 (Excluding threads) 3.914 (Including threads)	178	362	147	421
Auger Screw (Anchor 4)	19.06	Variable	112	308	144	400

Verification Testing: Vacuum Chamber

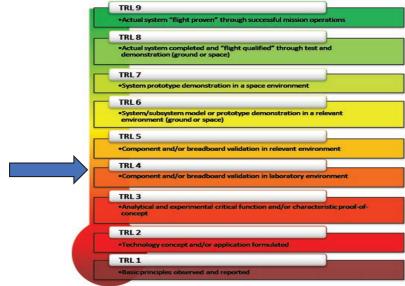

- In order to test the POND system in vacuum conditions without impairing other teams in the CSM CSR Lab, a custom, small form factor vacuum chamber was constructed
- The vacuum chamber will be used for further testing of the following areas:
 - ATI Resin spray pattern and flow rate in vacuum
 - ATI resin cure time and strength, after application in vacuum
- Vacuum chamber has been designed draw pressure down to at least 1*10^{^-7} Torr for all future tests
 - 1*10^{A-7} Torr reachable within 10 minutes
 - Internal volume for spray testing is approximately 15,500 cm³, depending on nozzle spray height



- Four Static Tests
 - 1-2 seconds
 - 18" or 38" engine height
 - Mark III
 - Mark II with center anchor
- Three Dynamic Tests
 - 3 seconds
 - 104" to 27.5" engine height
 - Mark III
 - Mark II double layer
 - Mark IV four-layer fold [Best Results]

Third Dynamic Test – D3

- Mark IV Blanket Quadruple Layer
- 104" to 27.5" Engine Height Range
- 3 Second Fire
- Larger Blanket with More Coverage


- Top Two Layers Damaged
- Bottom Two Layers Little to No Damage
- Ballooning of Top Two Layers

Results / Conclusions

• LLP

- Mark III and IV performed best
- · Added layers to improve functionality
- Survived landing; Launch survivability requires further development
- Minimal dust generated from gas permeation
- Anchors
 - · Secured the during hot fire testing
 - Performance better than expected
- POND
 - Promising early results
 - Further POND + LLP system testing required
- POND Distribution System
 - Proved basic functionality
 - Testing in vacuum with resin required

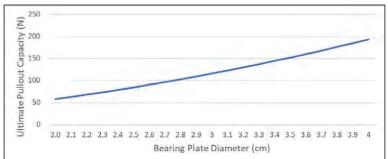
- Level 1 Requirements "The LILL-E Pad system shall..."
 - mitigate 92% of dust ejecta during a nominal landing event
 - mitigate 75% of dust ejecta during an off-nominal landing event
 - function for both a landing event and a launch event

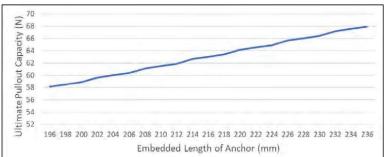
Thank You!

COLORADOSCHOOLOFMINES earth • energy • environment

Q & A

COLORADOSCHOOLOFMINES.


Backup Slides


Systems Engineering: Risks

Risk:	Completed/Planned Risk Mitigation Testing Regime:
"The system will not deploy correctly"	Systems Engineering ConOps development
"The LLP will come loose during a nominal or off-nominal landing/launch event"	Anchor Pull Testing
"The lunar vacuum environment will adversely affect the spray characteristics of the resin"	Vacuum Chamber Testing
"The lunar vacuum environment will inhibit proper curing of the resin"	Vacuum Chamber Testing
"The lunar vacuum environment will cause the POND resin to off-gas significantly before it can cure"	Vacuum Chamber Testing
"The LLP and POND will not interface correctly"	Masten Plume-Surface Interaction (PSI) Test Stand
"The LLP/POND material will deteriorate during a landing/launch event"	Masten Plume-Surface Interaction (PSI) Test Stand
"Gas permeation through the LLP will result in lofted regolith or excessive movement of the blanket"	Cold Gas Testing, Masten Plume-Surface Interaction (PSI) Test Stand
"The LLP will come loose during a nominal landing/launch event"	Cold Gas Testing, Masten Plume-Surface Interaction (PSI) Test Stand

Anchors

- Three primary factors influencing how well an anchor will hold:
 - Number of bearing plates
 - Diameter of the bearing plates
 - Depth of anchor deployment
- Large diameter bearing plates were favored for this design
 - Reduces the mass of the anchors
 - Testing bin depth did not allow for long length anchors to be used

POND

- Logistical requirements of testing required application by hand at test site (upper left)
- Upper right shows full LLP and Pond assembly
- Bottom left shows hot fire test
- Bottom right shows Pond fragment sample after testing (illustrating thickness and mechanical properties)

<u>Mark III Test</u> <u>Results @ 50 psi</u>

Before

During

After

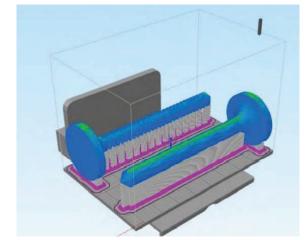
<u>Mark III Test</u> <u>Results @ 100 psi</u>

<u>Mark IV Test</u> <u>Results @ 50 psi</u>

Before

During

After


<u>Mark IV Test</u> <u>Results @ 100 psi</u>

Verification Testing: Anchor Pull Test

- All anchor variants used in pulltesting were fabricated with the aid of a 3D-printer
 - Material: Polylactic Acid (PLA)
 - 100% Infill
- Prior to the final selection of a anchor design, each variant was placed in a sample container filled with simulants of different fidelities
 - Playground sand
 - Portland cement
 - JST-1A analog

First Static Test – S1

- Mark III Blanket
- POND and Instrument Suite
- 18" Engine Height
- 2 Second Fire

- Blanket Destroyed
- 7" Deep Crater
- Instruments Provided Path for Exhaust

Second Static Test – S2

- Mark III Blanket
- Leftover POND, No Instruments
- 38" Engine Height
- 1 Second Fire
- Result
 - Blanket Survived
 - First Layer Damaged

Third Static Test – S3

- Mark III Blanket (Reused from S2)
- Leftover POND, No Instruments
- 38" Engine Height
- 2 Second Fire

- Reused Blanket Destroyed
- Shallow Crater
- Some Excavation

Fourth Static Test – S4

- Mark II Blanket w/ Center Anchor
- No POND, No Instruments
- 38" Engine Height
- 2 Second Fire

- Blanket Destroyed
- Anchor Only Cosmetic Damage
- Gromets Seemed to Help

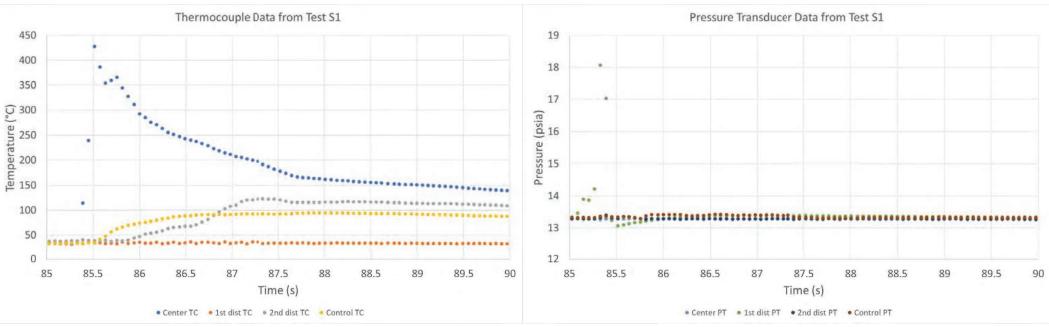
• First Dynamic Test – D1

- Mark III Blanket
- 104" to 27.5" Engine Height Range
- 3 Second Fire

- Top Layer Damaged
- Carbon Fiber Balooning
- Insulation Survived

Second Dynamic Test – D2

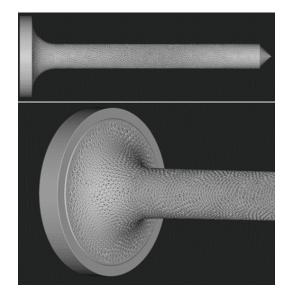
- Mark II Blanket Double Layer
- 104" to 27.5" Engine Height Range
- 3 Second Fire


- Top Blanket Destroyed
- Second Blanket Damaged
- Insulation Survived

Masten Plume-Surface Interaction (PSI) Test Stand

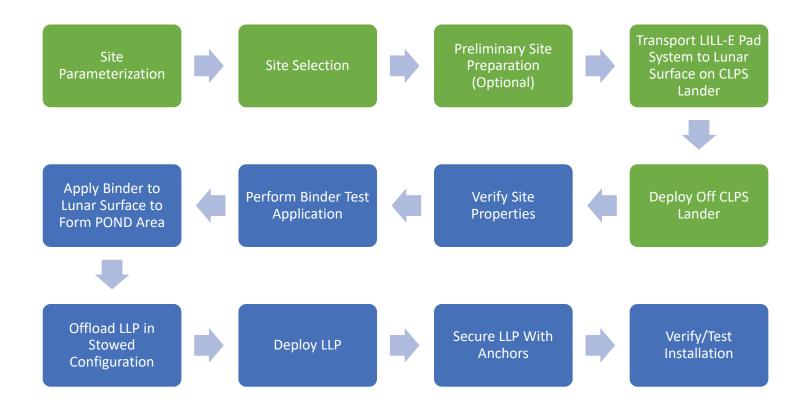
Test ID	Test Stand Type	Blanket	Blanket Diameter	Resin	Engine Height	Engine Fire Time
S1	Static	Mark III	2 ft	Yes, Full cover	18 in	2 s
S2	Static	Mark III	2 ft	Reused	38 in	1 s
S3	Static	Mark III (reused from previous test)	2 ft	Reused	38 in	2 s
S4	Static	Mark II (w/ middle anchor)	2ft	No	38 in	2 s
D1	Dynamic	Mark III	2 ft	No	104 in - 27.5 in	3 s
D2	Dynamic	Mark II (2-layer)	2 ft	No	104 in - 27.5 in	3 s
D3	Dynamic	Mark IV (4-layer)	3 ft	No	104 in - 27.5 in	3 s

Test ID	Observations
S1	Blanket destroyed; 7 in deep crater in center; Scattered POND fragments survived
S2	Blanket survived, first layer deteriorated
S3	Reused blanket destroyed; Shallow crater in center; Excavation beneath anchor heads
S4	Blanket destroyed; Gas intrusion at the central anchor may have accelerated deterioration
D1	Top layer deteriorated, insulation layer survived
D2	Top blanket destroyed, second survived
D3	2 layers deteriorated, the other 2 layers survived; Top layer ballooned and stiffened

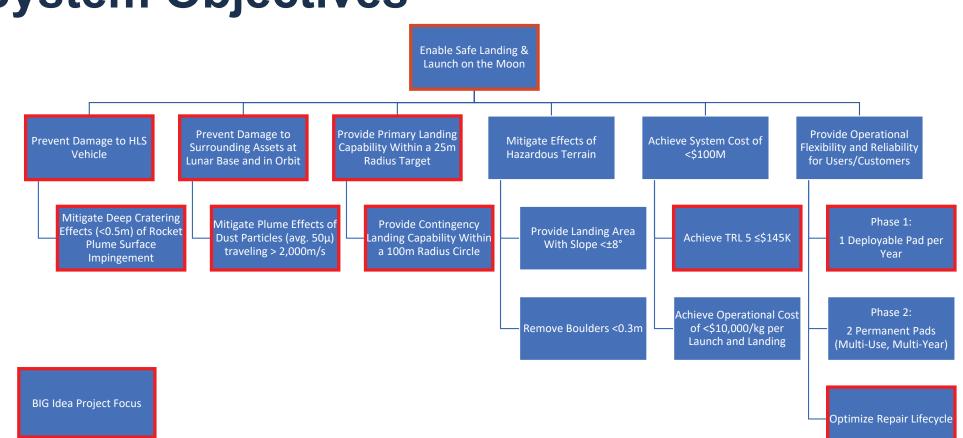

- 0 ms: A small rise in pressure indicates the oxygen purge that precedes engine ignition
- 50 ms: Engine ignition
- 241 ms: Max pressure is reached, 18.1 psia
- 301 ms: Blanket is breached by engine plume
 - This is indicated by a rapid temperature spike, as well as a drop in pressure
 - The pressure drop likely occurs because the breach in the blanket releases the air trapped beneath it
- 972 ms: Pressure returns to ambient readings
- 2,000 ms: Engine stops

Path to Flight

- Positive outlook for path-to-flight by 2026
- Design / testing iterations
- Trades on current & new designs
- Feasibility studies on cost & mass
- POND system shows promise but requires additional testing
- Hot-fires on POND
- System tests in relevant lunar conditions
- Cryovac testing for lunar night cycle survival

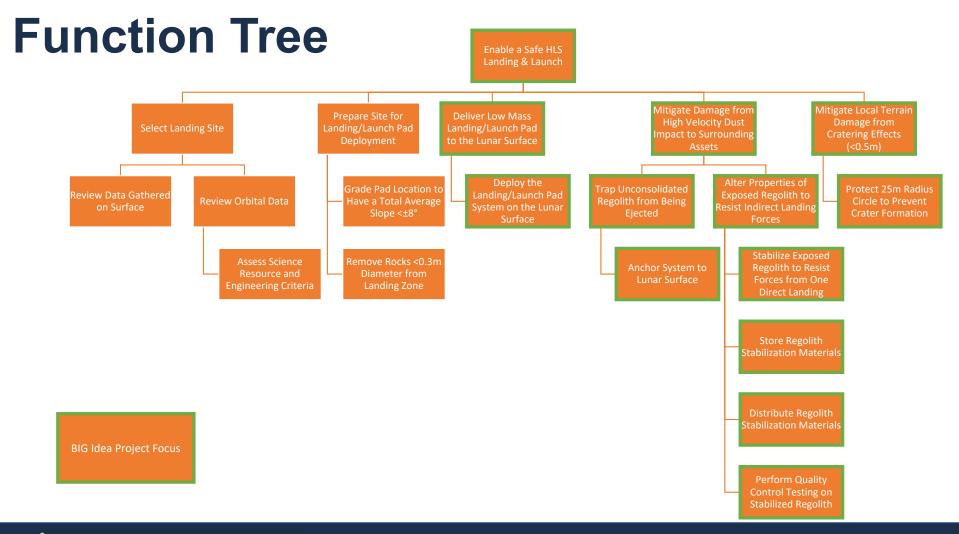


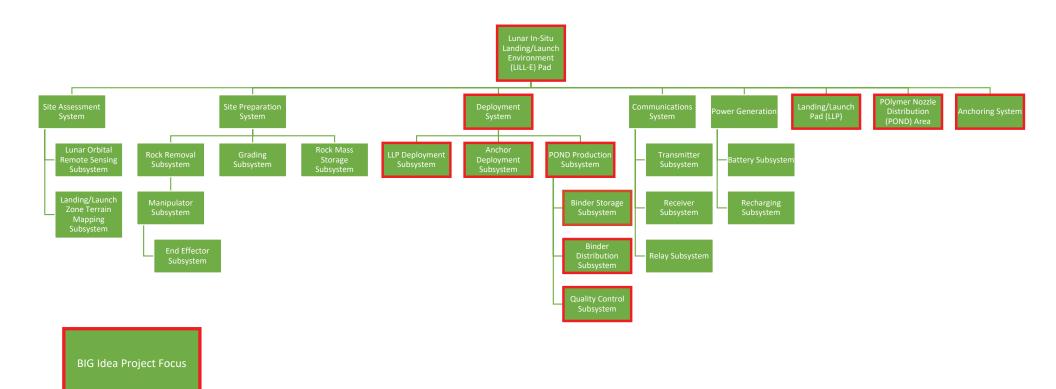
Path to Flight

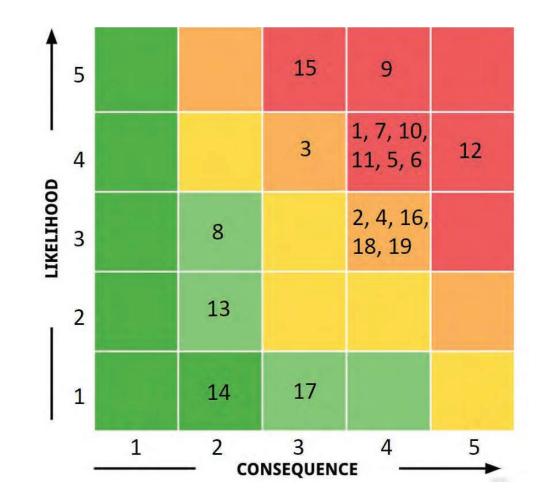

- Hot and/or cold gas testing within vacuum while system is deployed on regolith bed
- Additional design work prior to final flight hardware
- LLP blanket maturation via 3D fabric designs
- Reduction in permeability of LLP for pressure mitigation
- Anchor design optimization
- Deployment method of full system configuration finalized
- NASA SBIR and STTR funding opportunities for funding

LLP Material	Density (g/cm ³)	Unit Cost (per/cm ³)	Tensile Strength (MPa)	Packaging Capability (Qualitative Rating)
Carbon Fiber Fabric (Fibre Glast, 1K Plain Weave)	0.52	\$0.80	3,516	High
Carbon-Carbon Plates (CeraMaterials, CFC Sheets)	1.50	\$0.15	200	Medium
Carbon Foam Panels (CFOAM, Carbon Foam)	0.48	\$0.01	5	Low
Inconel Wire Cloth (Cleveland Wire, Inconel Alloy 600)	3.42	\$4.33	758	High
Tungsten Wire Cloth (Cleveland Wire, Tungsten Wire Cloth)	4.81	\$100.71	2,275	High
Graphite Foil (CeraMaterials, Graphite Foil Rolls)	1.00	\$0.07	5.5	High

Systems Engineering: ConOps

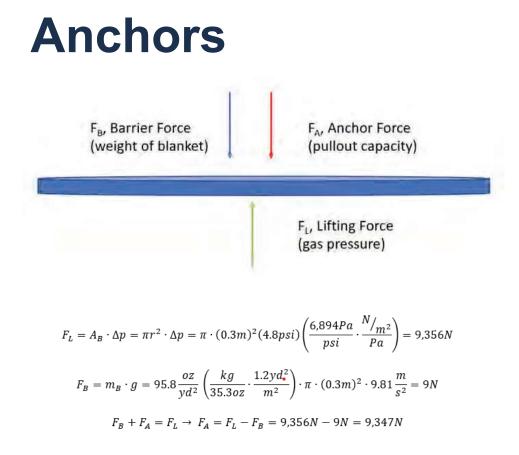



System Objectives


Product Tree

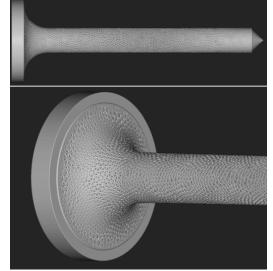
Risk # 💌	Risk Activity	Risk Type	Internal/External *	Mitigation	Consequence (1 - 5)	Likelihood (1 - 5)	Total Score 斗	Rank 💌	Last Assessed Date	Movement (↓/个) ▼
9	The POND will deteriorate during an off-nominal landing/launch event	Technology	Internal	*Develop test plan w/ Masten	4	5	20	1	3/18/2021	
				· · · · · · · · · · · · · · · · · · ·	(†	· · · · · · · · · · · · · · · · · · ·	1		1	
	1	'	1	*Develop deployment ConOps	1	í ,				
	1	'	1	*Develop POND application system	1	í ,				New
	1	'	1	*Coordinate with Lunar Outpost as industry partner	1 1	1				
12	The system will not deploy correctly	Technology	Internal	to development robotic deployment platform	5	4	20	1	3/18/2021	
	The system with hot deploy concerny	Technology		*Create baseline schedule					5/ 10/ 2021	
1	System will not achieve TRL 5 within BIG Idea timelines	Performance	Internal	*Review schedule at weekly meetings	4	4	16	3	3/18/2021	New
'	System will not achieve TRES within big ruea uniennes	Performance	Interna			<u> </u>	10	3	3/ 10/ 2021	
1	1	'	1	*Test various anchor designs and use test results to	1 1	1				
1	1	'	1	iterate upon design *Increase the number of anchors that will secure	1	í ,				•
1	1	'	1		1 1	1				T
		L '	1.	the LLP	1	· · ·			5 / 17 / 2001	
5	The LLP will come loose during a nominal landing/launch event	Technology	Internal	*Spray a seal of binder at the edge of the LLP	4	4	16	3	5/17/2021	
i '	1	'	1	*Test various anchor designs and use test results to	1	í ,				
1	1	'	1	iterate upon design	1 1	1				
1	1	'	1	*Increase the number of anchors that will secure	1	í ,				\uparrow
1	1	'	1	the LLP	1	í ,				
6	The LLP will come loose during an off-nominal landing/launch event	Technology	Internal	*Spray a seal of binder at the edge of the LLP	4	4	16	3	5/17/2021	
	1	· []		*Establish requirements based on the operating	1 1	· · · · · ·				
1	1	'	1	environment	1	í ,				New
7	The LLP will deteriorate from exposure to the lunar environment	Technology	Internal	*Test in relevant environment	4	4	16	3	3/18/2021	
		1	1	*Test POND samples before and after exposure to		·	1			
10	The POND will deteriorate from exposure to the lunar environment	Technology	Internal	lunar environment	4	4	16	3	3/18/2021	New
		1000000,		*Develop interface requirements	· · · · · · · · · · · · · · · · · · ·	í	<u> </u>		· · · ·	
11	The LLP and POND will not interface correctly	Technology	Internal	*Develop V&V plan	4	4	16	3	3/18/2021	New
<u> </u>		100110.05,		*Hire additional team members who are on-site at	· · · · · · · · · · · · · · · · · · ·	·			-,,	
15	Assembly of test systems will take longer than expected	Performance	Internal	the school	3	5	15	9	3/18/2021	New
- 13	Assembly of test systems will take longer than expected	Periornance,	Internai		+	<u>></u>	CL CL	3	202 (DE 10	
4	1	'	1	*Create budget tracker *Review budget tracker at weekly meetings	1 1	í	1 1			
1	1	'	1		1 1	í	1 1			New
	1	l '	1 .	*Re-design of POND cut procurement requirements		1			2/40/2024	
2	System will not achieve TRL 5 within provided budget	Performance	Internal	in half	4	3	12	10	3/18/2021	
/	1	· ·	1	*Develop schedule and reserve test platforms	1 1	í ,	1 1			
/	1	1 '	1	ahead of time	1 1	i	1 1			New
3			External	*Leverage industry partnerships	3	4	12	10	3/18/2021	
4	The LLP material will deteriorate during a landing/launch event	Technology	Internal	*Test LLP material with hot and cold gas testing	4	3	12	10	3/18/2021	New
		· [·		*Develop ConOps and analyze lunar day/night	1	ı ,				
/	1	1 '	1	cycles	1 1	i	1 1			N
/	1	· ·	1	*Develop binder requirements (spray rate, temp,	1 1	í ,	1 1			New
16	Cannot complete ConOps within one lunar day	Technology	Internal	etc.)	4	3	12	10	3/18/2021	
	POND resin will cure within the application system due to premature exposure to	0,		1 · · · ·	TT	ī,	<u> </u>	······		••
18		Technology	Internal	*Test system robustness for sunlight exposure	4	3	12	10	5/19/2021	New
	POND resin will cure within the application system due to exposure to lunar	- <u></u>	1	· · · · · · · · · · · · · · · · · · ·	1	í	1		1	į
19		Technology	Internal	*Test system in radiation environment	4	3	12	10	5/19/2021	New
<u> </u>	Gas permeation through the LLP will result in lofted regolith or excessive	100110.057		Test system in radiation enterior	· · · · · · · · · · · · · · · · · · ·	,	<u> </u>		-,,	
20	movement of the blanket	Technology	Internal	*Test system for gas permeability	4	3	12	10	10/19/2021	New
20			Internal	*Test POND samples with hot and cold gas testing	2	3	6	10	3/18/2021	New
<u> </u>	The POND will deteriorate during a nominal landing/launch event	Technology	Internai		<u>+</u>	<u>, s</u>	- °	1/	J/ 10/ 2021	inew
/ '		L. '	1	*Coordinate w/ Adherent on system design	1	1 .	.	10	0/10/0001	New
13	The system will be difficult to manufacture/fabricate	Technology	Internal	*Perform systems engineering	2	2	4	18	3/18/2021	P
4	1	1 '	1	*Use low fidelity simulants	1					\checkmark
17	Regolith simulant not available for testing purposes	Performance	External	*Source simulant from other sources	3	1	3	19	5/13/2021	*
1	1	1 '	1	*Spring 2021 graduates have committed to	1	, 1				New
14	The student team may shrink due to graduations	Performance	Internal	continuing their participation on the team	2	1	2	20	3/18/2021	inew
4										

COLORADOSCHOOLOFMINES.


	Verificaiton Method					
Requirement	(Analysis, Demonstration, Inspection, Test)	Method Description				
The LLIL-E Pad system shall mitigate 92% of dust ejecta						
during a nominal landing event	Test, Analysis	Cold Gas Test; Masten PSI Test Stand				
The LILL-E Pad system shall mitigate 75% of dust ejecta						
during an off-nominal landing event	Test, Analysis	Cold Gas Test; Masten PSI Test Stand				
The LILL-E Pad system shall function for both a landing		,				
event and a launch event	Test	Masten PSI Test Stand				
The system shall withstand a surface plume						
impingement maximum temperature of 4,000°C	Test, Analysis	Model Rocket Test; Masten PSI Test Stand				
The system shall withstand a surface plume						
impingement maximum heat flux of 200 W/cm ²	Test, Analysis	Model Rocket Test; Masten PSI Test Stand				
The anchor system shall resist a lifting force of 10,000		Anchor Pull Test; Cold Gas Test; Masten PSI				
Newtons	Test, Demonstration	Test Stand				
The anchor system shall function in regolith of bulk		Anchor Pull Test; Cold Gas Test; Masten PSI				
density 1.6 g/cm ³	Test	Test Stand				
The landing/launch pad (LLP) should not allow any						
rocket plume gas to permeate through it to the regolith		Cold Gas Test; Model Rocket Test; Masten				
surface	Demonstration, Inspection	PSI Test Stand				
The system shall withstand a surface plume		Cold Gas Test; Model Rocket Test; Masten				
impingement maximum gas velocity of 3,000 m/s	Demonstraiton, Test, Analysis	PSI Test Stand				
The system shall remain stationary when subjected to a		Cold Gas Test; Model Rocket Test; Masten				
maximum shear stress of 3,000 Pa	Demonstration, Analysis	PSI Test Stand				
Anchors shall perform their function after exposure to						
adfreeze forces	Test	Cryovac Anchor Test				
The LILL-E Pad system shall operate during lunar						
daytime temperatures of 182K ± 42K (-132°F ± 75°F / -		Cryovac POND Application & Material Test;				
91°C ± 42°C)	Test	Cryovac LLP Test				
The LILL-E Pad system shall survive lunar nighttime		,				
temperatures of 61K ± 20K		Cryovac POND Application & Material Test;				
(-350°F ± 36°F / -212°C ± 20°C)	Test	Cryovac LLP Test				
The LILL-E Pad system shall operate in a vacuum ranging		Cryovac POND Application & Material Test;				
from 1x10^4 to 2x10^5 molecules/cm ³	Test	Cryovac LLP Test				
The POND application system shall produce a TBD mm						
thick coating of polymer	Test, Demonstration	POND Application System Test				
The POND application system shall distribute a polymer						
coating over a 31,400 m ² area	Analysis	LILL-E Pad System Analysis				
The POND application system shall be self-clearing of	· ·					
unused precursor	Demonstration	POND Application System Test				
		LILL-E Pad System Analysis;POND				
POND packaging dimensions should not exceed TBD	Analysis, Demonstration	Application System Test				
,	, , ,					
The LILL-E Pad system shall deploy within one lunar day	Analysis	LILL-E Pad System Analysis				

Anchors

- Analysis of data from Masten revealed that the anchors performed exceptionally well, resisting lifting forces much greater then expected (Roughly 10x)
- Potential Factors affecting increased performance:
 - Mass of the anchors
 - Plume force "pinning" the LLP sample to the test-bed
 - Fidelity of regolith simulant (grainsize and shape)


- Number of Anchors used during Masten PSI Tests: 8
- Lifting force resisted per anchor: 1,168 Newtons

Anchors

- Further work:
 - Topology and mass optimization of the anchors for large scale system deployment
 - Anchor material selection
 - A1000-RAM10 aluminum alloy
 - Titanium alloy
 - Anchor fabrication
 - Additive manufacturing
 - Anchor deployment method
 - Deployment angle

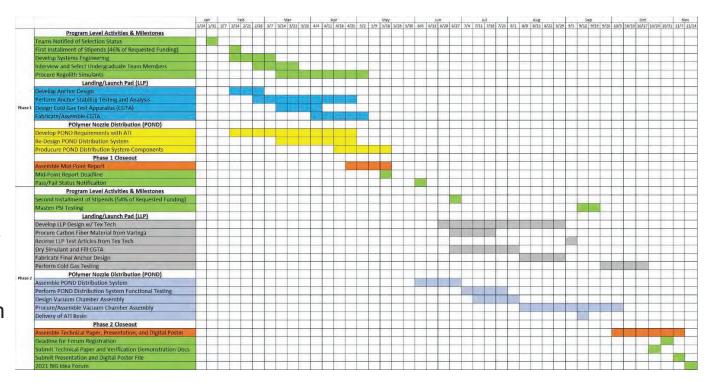
Mass / Power / Volume

• LLP

- Single-layer, 25m radius Mark III blanket
- A mass-optimized blanket can be chosen later in the development process

• Anchors

- Stainless steel (lighter material will be used in the future)
- The number of anchors is calculated by scaling up from the number of anchors that were used on the smaller test articles in Mojave.


• The POND

• 100m radius area with a 2mm layer of material

Subsystem	Mass	Power	Volume
LLP	512 kg	n/a	25 m ³
Anchors (83 total)	99 kg	n/a	0.09 m ³
POND Resin	53,407 kg	n/a	63 m ³
POND Distribution Sys.	12 kg	373 W	0.02 m ³
LLP/Anchor Deployment Sys.	TBD	TBD	TBD
Total	54,030 kg	373 W	88.11 m³

Project Schedule

- Phase 1:
 - Systems engineering and requirements development,
 - Anchor design and testing,
 - CGTA design and assembly
 - Re-design of the POND distribution system
- Phase 2:
 - LLP development
 with Tex Tech
 - Fabrication of the final anchor design,
 - POND distribution system assembly and function testing
 - Cold gas testing, and Masten PSI testing

Budget

- Summary
 - Total: \$145,250
 - Spent: \$127,539
 - Remaining: \$17,711
- Less than expected spending on student stipends
- Materials/supplies spent more than originally estimated overall
- Simulant procured at no-cost
- Rover not developed within program

		Phase	1		Phase 2				Totals		
	Allocation	Actuals	Variance	Source	Allocation	Actuals	Variance	Source	Allocation	Actuals	Variance
Labor											
Student Stipends	\$26,125	\$9,544	\$16,581		\$27,500	\$21,500	\$7,000		\$53,625	\$30,044	\$23,581
									То	tal Variance	\$23,581
Materials/Supplies											
LLP	\$5,000	\$415	\$4,585	ICON	\$1,000	\$17,121	-\$16,121	ICON	\$6,000	\$17,536	-\$11,536
Anchors	\$1,500	\$0	\$1,500	BIG Idea	\$500	\$1,864	-\$1,364	BIG Idea	\$2,000	\$1,864	\$136
Binder	\$9,000	\$3,075	\$5,925	BIG Idea	\$1,000	\$0	\$1,000	BIG Idea	\$10,000	\$3,075	\$6,925
POND	\$8,000	\$1,828	\$6,172	BIG Idea	\$1,000	\$18,269	-\$17,269	BIG Idea	\$9,000	\$20,097	-\$11,097
Simulant	\$3,000	\$0	\$3,000	BIG Idea	\$1,000	\$0	\$1,000	BIG Idea	\$4,000	\$0	\$4,000
Rover	\$0	\$0	\$0	BIG Idea	\$5,000	\$0	\$5,000	BIG Idea		\$0	\$5,000
Misc. Lab	\$1,000	\$0	\$1,000	BIG Idea	\$1,000	\$0	\$1,000	BIG Idea	\$2,000	\$0	\$2,000
Liquid N2	\$400	\$0	\$400	BIG Idea	\$200	\$200	\$0	BIG Idea	\$600	\$200	\$400
Test Facility Fees	\$17,426	\$17,426	\$0	BIG Idea	\$17,426	\$17,426	\$0	BIG Idea	\$34,851	\$34,851	\$0
									То	tal Variance	-\$4,173
Domestic Travel											
Travel - Masten (Travel to Mojave, CA)	\$0	\$0	\$0	BIG Idea	\$1,000	\$13,372	-\$12,372	BIG Idea	\$1,000	\$13,372	-\$12,372
Travel - ASCEND Flights (9x Plane Tickets to BIG Idea Forum (\$300/each))	\$0	\$0	\$0	BIG Idea	\$2,700	\$0	\$2,700	BIG Idea	\$2,700	\$0	\$2,700
Travel - ASCEND Hotels (9x Hotel, Check-In 16 Nov / Check-Out 20 Nov, 4 days (\$100/ea))	\$0	\$0	\$0	BIG Idea	\$3,600	\$0	\$3,600	BIG Idea	\$3,600	\$0	\$3,600
Travel - ASCEND Rental Cars (2x Rental Cars, 5 days (\$250/ea))	\$0	\$0	\$0	BIG Idea	\$500	\$0	\$500	BIG Idea	\$500	\$0	\$500
Travel - ASCEND Registration (9x Registration Fee, BIG Idea Forum / ASCEND 2021 (\$500/ea))	\$0	\$0	\$0	BIG Idea	\$4,500	\$0	\$4,500	BIG Idea	\$4,500	\$0	\$4,500
									То	tal Variance	-\$1,072
Overhead											
Colorado Space Grant Consortium Indirect Costs	\$0	\$0	\$0	BIG Idea	\$6,500	\$6,500	\$0	BIG Idea	\$6,500	\$6,500	\$0
									То	tal Variance	\$0
	P	hase 1			Phase 2				Total		
	Received Funds	Actuals	Remaining		Received Funds	Actuals	Remaining		Received Funds	Actuals	Remaining
BIG Idea Funding	\$55,625	\$31,872	\$23,753		\$65,300	\$78,131	-\$12,831		\$120,925	\$110,003	\$10,922
ICON Sponsorship	\$24,325	\$415	\$23,910		\$0	\$17,121	-\$17,121		\$24,325	\$17,536	\$6,789
Total	\$79,950	\$32,287	\$47,663		\$65,300	\$95,252	-\$29,952		\$145,250	\$127,539	\$17,711

NIOSH – Hydrogen Cyanide

- 1988 OSHA Permissible Exposure Limits Hydrogen Cyanide
 - "The ACGIH (1986/Ex. 1-3) has summarized the extensive body of human evidence on the adverse effects resulting from exposure to hydrogen cyanide. The Documentation notes that exposure to levels of 45 to 54 ppm hydrogen cyanide can be tolerated for one hour with no immediate or delayed effects, but that 18 to 36 ppm produces "slight" symptoms after several hours of exposure. The ACGIH also cites Grabois (1954/ Ex. 1-1150), who reported that workers in apricot kernel processing plants experienced no ill effects when exposed to hydrogen cyanide at a concentration of approximately 10 ppm."
- <u>https://www.cdc.gov/niosh/pel88/74-90.html</u>